Intermittent Coating of Viscous and Low Viscous Fluids

<u>Ralf Diehm</u>, Sebastian Raupp, Marcel Schmitt, Philip Scharfer and Wilhelm Schabel Institute of Thermal Process Engineering, Thin Film Technology (TFT) Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany

Corresponding author: <u>ralf.diehm@kit.edu</u> **Keywords:** slot die coating, intermittent coating, low viscous fluids

For production of organic electronic devices such as organic photovoltaics (OPV) in a roll-to-roll manufacturing line, patterned coatings of the functional layers are important to separate the individual devices (e.g. Fig.1). There are various coating and printing techniques e.g. slot die coating and gravure printing, allowing the production of structured films for organic electronics [1]. To avoid leveling problems of the available printing techniques [2], intermittent slot-die coating can play an important role for the production of structured films in organic electronics.

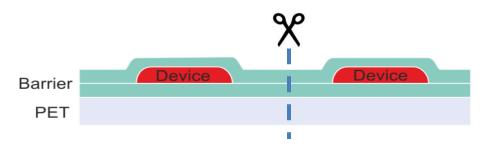


Fig. 1. Concept of isolated organic electronic devices between barrier-layers on top of a PET-foil.

A novel technology for intermittent coating of high viscous fluids and wet film thicknesses of about 100 μ m was already presented elsewhere [3]. On this base we investigated intermittent coating techniques for viscous and low viscous fluids and wet film thicknesses in the range of 6 – 30 μ m. In this work, fluid pressures profiles were measured in front of and inside the slot die and compared with profiles of the films, especially the starting and stopping edges and the film homogeneity.

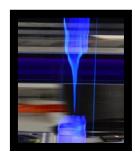


Fig. 2: Coating defects at the stopping edge of an intermitted coating of low viscous fluids

References

- 1. Søndergaard, Roar R.; Hösel, M.; Krebs, Frederik C. (2012): Roll-to-Roll fabrication of large area functional organic materials. In: J. Polym. Sci. B Polym. Phys. 51 (1), S. 16-34. DOI: 10.1002/polb.23192
- Hernandez-Sosa, G., Bornemann, N.; Ringle I.; Agari, M.; Dörsam, E.; Mechau, N.; Lemmer, U. (2013): Rheological and Drying Considerations for Uniformly Gravure-Printed Layers: Towards Large-Area Flexible Organic Light-Emitting Diodes. In: Adv. Funct. Mater., 23, S. 3164-3171. DOI: 10.1002/adfm.2012028
- Schmitt, M.; Diehm, R.; Scharfer, P.; Schabel, W. (2014): New Intermitting Concepts for Slot Die Coating of Li-Ion Battery Electrodes. At 17th International Coating Science and Technology Symposium (ISCST), Sep. 7-10, 2014 San Diego, CA.