Edge formation in slot die coating of lithium-ion battery electrodes

Marcel Schmitt, Paul Kitz, Philip Scharfer and Wilhelm Schabel

Institute of Thermal Process Engineering, Thin Film Technology (TFT) Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe, Germany

Keywords: slot die coating, edge effects, film uniformity, lithium-ion batteries

In the manufacturing process of Li-Ion batteries the slot die coating of the electrodes is a crucial step, which is not fully understood yet. Especially the mechanisms creating super-elevations at the coating edges, which cause trouble in the downstream process steps, are not fully understood yet. Until now literature only delivers a model for super-elevations in hot melt extrusion coatings [1], which for some reasons is hardly comparable.

Fig. 1. Super-elevated film-edges of a wet LIB coating, measured online (left). The superposition of several "heavy edges" leads to deformations in the mm-scale during the up-winding process, which provoke a stiffening embossing in the metal foil and a delamination of the electrodes (right).

Further and more recent literature only described and discussed the observed heavy edges [2,3]. Therefor we applied flow and deformation balances and invented a semi-empirical expression describing the height of super-elevated edges. This expression is based on the liquid acceleration between the gap and the full established downstream film-flow.

It was compared to the latest experimental results which could be explained quite well. The comparison shows a significant increasing height of the so called of heavy edges for an increasing coating gap to film height ratio.

REFERENCES

- [1] T. Dobroth, L. Erwin, Polymer Engineering & Science 1986 26 (7), 462. DOI: 10.1002/pen.760260704.
- [2] M. Schmitt, P. Scharfer, W. Schabel, J Coat Technol Res 2013, 1. DOI: 10.1007/s11998-013-9498-y.
- [3] B. Bitsch, J. Dittmann, M. Schmitt, P. Scharfer, W. Schabel, N. Willenbacher, *Journal of Power Sources* **2014** 265, 81. DOI: 10.1016/j.jpowsour.2014.04.115.