
Infrared laser induced thermocapillary deformation and destabilization 

of thin liquid films 

H.M.J.M. Wedershoven, C.W.J. Berendsen, J.C.H. Zeegers and A.A. Darhuber
1
 

1 
Mesoscopic Transport Phenomena Group, Department of Applied Physics, 

Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands 

Corresponding author: a.a.darhuber@tue.nl 

Keywords: thin liquid films, thermocapillary flow, film rupture, dewetting 

A thin liquid film on a partially wetting substrate can be destabilized by means of an air-jet [1]. The liquid 

film will rupture at multiple points and this will lead to a residual droplet pattern on the substrate. In this 

study, we deform and rupture thin liquid films by means of infrared (IR) illumination [2,3].  

Fig. 1 shows a schematic image of the experi-

mental setup. We deposit a thin liquid film of a 

non-volatile liquid on a wetting or partially 

wetting substrate by spin-coating. The initial 

film thickness is approximately 5 µm. During 

the experiment, the substrate is rotating while 

an IR laser beam heats up the substrate and 

liquid film (the diameter of the beam is ap-

proximately 200 µm). This will induce a non-

uniform temperature distribution that drives 

the thermocapillary flow of the liquid. We 

measure the deformation of the thin film using 

dual-wavelength interference microscopy.   

 

 

 

 

 

 

 

Fig. 2(a) shows the deformation of the thin film on a wetting substrate. The substrate speed Usub was 5 mm/s, 

the laser power P = 8 W. The yellow circle indicates the size and position of the laser beam. The red line in-

dicates the trajectory of the laser beam. We studied the effect of P and Usub. 

Fig. 2(b,c) shows the deformation and break-up of the thin film on a partially wetting substrate. In both cases 

P = 8 W whereas Usub was 5.3 mm/s for (b) and 8.2 mm/s for (c). Fig. 2(b) shows that a completely dry track 

is formed along the laser trajectory. The first dry-spot rapidly dewets the substrate, up to the rim of the de-

formation. This prevents the formation of other dry-spots. However, when we increase the substrate speed 

(Fig. 2(c)) we see that residual droplets are deposited on the substrate. We measured the critical substrate 

speed at the transition from the ‘dry’-regime to the ‘residual droplets’-regime for different laser powers.  

We developed a numerical simulation that combines a heat transfer model with a thin film model, based on 

the lubrication approximation [4] and a phenomenological expression for the disjoining pressure [5]. Our 

simulation reproduces the critical speed from the experiment well. 
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Fig.1: Schematic experimental setup (not to scale). 

Fig. 2: Interference 

micrographs of (a) the 

deformation on a 

wetting substrate and 

(b,c) the deformation 

and rupture on a 

partially wetting 

substrate for different 

substrate speeds. 
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